



# NEUBAU KINDERGARTEN UND ERSCHLIEßUNG KAPELLE

# STADT TAUBERBISCHOFSHEIM

EIERSHEIMER WEG/ALTE STEIGE FLURSTÜCKE 7025, 7026, 7028

# TAUBERBISCHOFSHEIM HOCHHAUSEN

- BAUGRUNDGUTACHTEN -

Aufgestellt:

Tauberbischofsheim, 01.09.2023 WALTER Ingenieure GmbH & Co. KG Beratende Ingenieure VBI

i.A. I Workeles

i. A. F. Wörtche

(Geologe M.Sc., Umweltwissenschaften M.Sc.)



## **INHALTSVERZEICHNIS**

| 1.  | VORBEMERKUNGEN                            | 3  |
|-----|-------------------------------------------|----|
| 2.  | VERWENDETE UNTERLAGEN                     | 3  |
| 3.  | DURCHGEFÜHRTE UNTERSUCHUNGEN              | 3  |
| 4.  | ERGEBNISSE                                | 4  |
| 4.1 | GEOLOGIE/HYDROGEOLOGIE                    | 4  |
| 4.2 | BODENMECHANISCHE UNTERSUCHUNGEN           | 4  |
| 4.3 | CHEMISCHE LABORANALYSE                    | 5  |
| 4.4 | GEOTECHNISCHE KLASSIFIKATION              | 5  |
| 5.  | SCHLUSSFOLGERUNG                          | 6  |
| 5.1 | GRÜNDUNG                                  | 6  |
| 5.2 | ERDBAU, AUSHUB, WASSERHALTUNG, ABDICHTUNG | 7  |
| 5.3 | STRAßENBAU, PARKPLÄTZE                    | 8  |
| 5.4 | KANAL- UND LEITUNGSBAU                    | 8  |
| 5.5 | EINTEILUNG IN HOMOGENBEREICHE             | 9  |
| 6.  | EMPFEHLUNGEN UND HINWEISE                 | 10 |

#### ANLAGEN

| Anlage 1 | Übersichtslageplan |
|----------|--------------------|
| Anlage 2 | Lageplan           |
| Anlage 3 | Profile            |
| Anlage 4 | Legende            |
| Anlage 5 | Fotos              |
| Anlage 6 | Wassergehalte      |
| Anlage 7 | Setzungsberechnung |
| Anlage 8 | Laborbefunde       |
|          |                    |



#### 1. VORBEMERKUNGEN

In Tauberbischofsheim-Hochhausen ist in der Straße Eiersheimer Weg auf den Flurstücken 7025, 7026 und 7028 der Neubau eines Kindergartens mit Außenbereich geplant. Das geplante Gebäude wird auf den Flurstücken 7025 und 7026 errichtet, der Außenbereich wird sich auf dem Flurstück 7028 befinden. Des Weiteren ist es geplant die Restflächen der Flurstücke über eine Zufahrtsstraße zu erschließen.

Zur Erkundung des Untergrundes und zur Bestimmung der Tragfähigkeit der anstehenden Bodenschichten wurden insgesamt zwei Rammkernsondierungen sowie eine leichte Rammsondierung (DPL) durchgeführt. Aus dem erkundeten Bodenmaterial wurde eine Mischprobe gebildet und eine orientierende Deklarationsanalyse auf die Parameter der VwV-Boden sowie die ergänzenden Parameter der DepV durchgeführt. Darüber hinaus wurde der natürliche Wassergehalt des erkundeten Bodens ermittelt.

#### 2. VERWENDETE UNTERLAGEN

Zur Klärung der Fragestellung sind folgende Unterlagen herangezogen worden:

- Kartensammlung im Onlineportal der LUBW
- Geologische Karte im Onlineportal des LGRB
- Planunterlagen des Bauvorhabens
- Programm GeoLogik Profil Tec
- DIN 1054, DIN 4023, DIN 18196, DIN 18300, DIN 18533-1
- Verwaltungsvorschrift zur Verwertung von als Abfall eingestuftem Bodenmaterial (VwV)
- Verordnung über Deponien und Langzeitlager Deponieverordnung (DepV)

### 3. DURCHGEFÜHRTE UNTERSUCHUNGEN

Es sind folgende Untersuchungen durchgeführt worden.

- 2 Rammkernsondierungen (RKS) mit geotechnischer Aufnahme der Bohrprofile
- 1 leichte Rammsondierung (RS) mit Erfassung der Schlagzahlen und Bodenkonsistenzen.
- Bestimmung des natürlichen Wassergehalts von 2 Bodenproben
- orientierende Schadstoffuntersuchung VwV-Boden sowie DepV



#### 4. ERGEBNISSE

#### 4.1 GEOLOGIE/HYDROGEOLOGIE

Gemäß geologischer Karte des LGRB stehen im Baufeld oberflächennah Ablagerungen der Oberen Röttone an. Diese setzen sich aus schluffigen, teilweise sandigen Tonsteinen zusammen. Das Material ist in den oberen Metern verwittert bis angewittert, mit zunehmender Tiefe geht es in Festgestein über. Bei den Sondierungen konnten die Schichten der Oberen Röttone nicht erkundet werden, stattdessen lagen mehrere Meter mächtige Hanglehme bzw. mächtiger Löss vor.

**RKS 1** erkundete unter einem etwa 0,2 m mächtigen **Oberboden** einen mind. 5,8 m mächtigen **Hanglehm** bzw. **Löss** von hellbrauner bis gelbbrauner Farbe und weicher bis steifer Konsistenz. Dieser setzt sich aus einem tonigen Schluff zusammen.

**RKS 2** erkundete ebenfalls unter einem ca. 0,2 m mächtigen **Oberboden** einen mind. 3,8 m mächtigen **Hanglehm** bzw. **Löss** von hellbrauner bis gelbbrauner Farbe und weicher bis steifer Konsistenz. Es handelt sich ebenfalls um einen tonigen Schluff.

Bei der leichten Rammsondierung (**DPL**) wurden die Schläge pro 10 cm Eindringtiefe ( $N_{10}$ ) ermittelt. Die Farbcodierung des Profils ist wie folgt: rot = weich/locker, grau = steif/mitteldicht, grün = halbfest/mitteldicht.

**RS 1** erfasste für den erkundeten **Hanglehm/Löss** bis 6,0 m u. GOK vorwiegend weiche Konsistenzen, teilweise steife Zwischenbereiche.

Bei den Sondierungen wurde kein **Grundwasser** angetroffen und dieses ist in baurelevanten Tiefen auch nicht zu erwarten. In niederschlagsreichen Jahreszeiten kann es jedoch zu temporären Sicker- und Schichtwasserzutritten kommen.

#### 4.2 BODENMECHANISCHE UNTERSUCHUNGEN

Am erkundeten Bodenmaterial wurde der natürliche Wassergehalt bestimmt. Die ermittelten Werte sind in Tabelle 1 und Anlage 6 dargestellt.

Tabelle 1: Wassergehalte der erkundeten Bodenschichten.

| Probe | Einheit | Wassergehalt | Bezeichnung   |
|-------|---------|--------------|---------------|
| RKS 1 | Gew.%   | 19,0         | Hanglehm/Löss |
| RKS 2 | Gew.%   | 20,4         | Hanglehm/Löss |



#### 4.3 CHEMISCHE LABORANALYSE

Aus dem erkundeten Bodenmaterial wurde eine Mischprobe erstellt und eine orientierende Schadstoffuntersuchung auf die Parameter der VwV-Boden sowie die ergänzenden Parameter der DepV durchgeführt. Die Ergebnisse sind in nachfolgender Tabelle 2 zusammengefasst.

Tabelle 2: Klassifikation nach VwV-Boden für die erkundeten Bodenschichten.

| Probe    | VwV            | maßgebende    | DepV           | maßgebende     |
|----------|----------------|---------------|----------------|----------------|
|          | Klassifikation | Parameter VwV | Klassifikation | Parameter DepV |
| MP Boden | Z 0            | keine         | DK 0           | keine          |

Basierend auf den vorliegenden Ergebnissen kann das Material nach VwV-Boden als Z 0 deklariert werden, eine Wiederverwertung in bodenähnlichen Anwendungen zur Verfüllung von Abgrabungen ist uneingeschränkt möglich. Nach DepV handelt es sich um DK 0 Material, eine Entsorgung ist auf einer der Deponieklasse entsprechenden Deponie möglich.

#### 4.4 GEOTECHNISCHE KLASSIFIKATION

4.4.1 Oberboden

Zusammensetzung: Schluff, tonig, organisch, braun

DIN 18196: UM, UL, OU

DIN 18300:2012: Klasse 1

Beurteilung: Material ist wasser- und frostempfindlich (Klasse F3 ZTVE StB 17).

4.4.2 Hanglehm/Löss

Zusammensetzung: Schluff, tonig, hellbraun bis gelbbraun

weich bis steif Konsistenz:

Mächtigkeit: mind. 3,8 – 5,8 m, nicht durchteuft

DIN 18196: TM, TL, UL

Kennziffern:  $\gamma = 19 - 20 \text{ kN/m}^3$ Wichte

Erfahrungswerte: Reibungswinkel  $\varphi = 25^{\circ} - 30^{\circ}$ 

> $c' = 10 - 30 \text{ kN/m}^2$ Kohäsion  $Es = 3 - 6 MN/m^{2}$

Steifeziffer

Beurteilung: Material ist wasser- und frostempfindlich (Klasse F3 ZTVE StB 17)



#### 5. SCHLUSSFOLGERUNG

### 5.1 GRÜNDUNG

Da keine detaillierten Planunterlagen vorliegen wird die Gründung auf (Streifen-)Fundamente sowie auf eine tragende Bodenplatte betrachtet. Das Gebäude wird nicht unterkellert, als Gründungshorizont dient der erkundete Hanglehm/Löss. Es wird auf eine frostsichere Einbindetiefe von mind. 0,8 m hingewiesen, dies kann über die Herstellung von Frostschürzen erreicht werden.

Entsprechend der Tabelle A 6.7 der DIN 1054:2010 können für einen als TM, TL, UM (feinkörniger Boden, mittel- bis leichtplastisch, steife bis halbfeste Konsistenz) klassifizierten Boden, in Abhängigkeit der Einbindetiefe, folgende Bemessungswerte des Sohlwiderstandes  $\sigma_{R,d}$  angesetzt werden. Bei Anwendung der genannten Werte kann es bei mittig belasteten Fundamenten zu Setzungen im Bereich von 2 – 4 cm kommen.

Tabelle 3: Bemessungswert des Sohlwiderstandes für einen TM, TL, UM klassifizierten Boden (DIN 1054).

| Einbindetiefe | Bemessungswert Sohlwiderstand σ <sub>R,d</sub> bei Fundamentbreiten 0,5 – 2,0 m |                                |  |
|---------------|---------------------------------------------------------------------------------|--------------------------------|--|
| [m]           | mittleren steife Konsistenz                                                     | mittleren halbfeste Konsistenz |  |
| 0,5           | 170                                                                             | 240                            |  |
| 1,0           | 200                                                                             | 290                            |  |
| 1,5           | 220                                                                             | 350                            |  |
| 2,0           | 250                                                                             | 390                            |  |

Für den Hanglehm/Löss können bei steifer Konsistenz für (Streifen-)Fundamente folgende Bemessungswerte des Sohlwiderstandes  $\sigma_{R,d}$  angesetzt werden. (siehe Tabelle 4 und Anlage 7) angesetzt werden. Rechnerische Setzungen beschränken sich dabei auf ca. 2 cm.

Tabelle 4: Bemessungswert des Sohlwiderstandes für den erkundeten Hanglehm.

| Fundamentbreite [m] | Sohlwiderstand σ <sub>R,d</sub> [kN/m²] |
|---------------------|-----------------------------------------|
| 0,5                 | 180                                     |
| 0,6                 | 160                                     |
| 0,7                 | 140                                     |
| 0,8                 | 130                                     |



Bei einer Gründung über eine tragende Bodenplatte im Hanglehm/Löss kann ein Bettungsmodul von 6 MN/m³ angesetzt werden. Rechnerische Setzungen lassen sich dadurch auf ca. 2 cm beschränken.

Da der erkundete Hanglehm/Löss stark kompressibel ist und in einer vorwiegend weichen Konsistenz vorliegt wird empfohlen unter einer tragenden Bodenplatte sowie einer nichttragenden Bodenplatte einen mind. 40 cm mächtigen Bodenaustausch herzustellen. Dies soll dem kompressiblen Verhalten der bindigen Bodenschichten entgegenwirken. Der Bodenaustausch sollte aus einem gemischtkörnigen, gut verdichtbaren Fremdmaterial bestehen, z.B. gebrochener Muschelkalk 0/45 oder Grobschotter. Entsprechend den Lastausbreitungswinkeln sollte der Bodenaustausch über das Bauwerk hinaus gelegt werden. Um ein Eindrücken in die bindigen Bodenschichten zu vermeiden, sollte der Bodenaustausch in ein Geotextil gepackt werden.

#### 5.2 ERDBAU, AUSHUB, WASSERHALTUNG, ABDICHTUNG

Die bindigen Bodenschichten sind mit gängigen Baumaschinen gut lösbar, sie sind stark wasserempfindlich und können bei Wasserzutritten aufweichen. Der Oberboden ist vor den Erdarbeiten abzuschieben und randlich zu lagern, dieser kann im Garten- und Landschaftsbau wiederverwertet werden.

Die Bodenschichten werden als schwach durchlässig angesehen, kf-Werte ca. ≤ 10-7. Auf dem Planum kann sich daher Niederschlagswasser aufstauen und dieses aufweichen, nach Aushub sollte das Planum daher nur kurzzeitig offenliegen. Sollten zum Bauzeitpunkt aufgeweichte Verhältnisse vorliegen, müssen diese Bereiche ausgetauscht werden.

Die erkundeten Bodenschichten eignen sich nur bedingt zur Verfüllung von Arbeitsräumen und Gräben. Beim Einbau sind die optimalen Einbaubedingungen zu beachten, ein zu trockener oder aber auch zu nasser Einbau kann zu nachträglichen Setzungen bzw. einer unzureichenden Verdichtung führen. Auffüllungen müssen lagenweise ausgebracht und verdichtet werden, Lagen á 30 cm.

Zur Abführung von auftretendem Sicker- und Schichtwasser sollte unter der Bodenplatte eine kapillarbrechende Schotterschicht hergestellt werden. Solange eine funktionsfähige Drainage vorliegt genügt nach DIN 18533-1 eine Abdichtung der erdberührenden Bauteile gegen Bodenfeuchte und nichtdrückendes Wasser, Wassereinwirkungsklasse W1.2-E.



#### 5.3 STRAßENBAU, PARKPLÄTZE

Auf dem bindigen Hanglehm ist ein Verformungsmodul von 45 MN/m² in der Regel nicht oder nur schwer zu erreichen. Das Material wird als stark wasserempfindlich angesehen, bei entsprechender Witterung kann das Planum daher aufweichen. Das Erdplanum sollte nach Fertigstellung möglichst nicht mehr befahren werden. Zur Verbesserung der Tragfähigkeit wird ein Bodenaustausch aus mind. 30 cm mächtigem, gemischtkörnigem Fremdmaterial empfohlen. Alternativ kann die Tragfähigkeit mittels eines Mischbindemittels (z.B. Kalk-Zement-Gemisch 50/50) verbessert werden. Erfahrungsgemäß kann mit einer Zugabemenge von ca. 2 bis 6 Gew.% gerechnet werden. Die genaue Zugabemenge ist abhängig von der Witterung und den Wassergehalten des Bodenmaterials zum Bauzeitpunkt.

Auf dem verbesserten Planum können die frostsicheren Verkehrsflächen in Anlehnung an die RStO aufgebaut werden.

#### 5.4 KANAL- UND LEITUNGSBAU

Gruben und Gräben zur Leitungsverlegung können in Tiefen < 1,25 m temporär senkrecht ausgehoben werden, in Tiefen > 1,25 m sollten diese in geböschter Form erfolgen. In bindigen Bodenschichten sind Böschungen mit max. 60 Grad anzusetzen. Um ein Abschwemmen durch Niederschlagswasser zu verhindern, sollten die Böschungen mittels Folien geschützt werden. Oberflächenwasser sollte mittels Gräben und Dämmen ferngehalten werden. Da in baurelevanten Tiefen kein Grundwasser angetroffen wurde, genügt eine Wasserhaltung gegen Niederschlags- und Oberflächenwasser. In niederschlagsreichen Jahreszeiten kann es zu erhöhten Sicker- und Schichtwasserzutritten kommen.

Die bindigen Bodenschichten sind im trockenen Zustand für den Kanalbau in der Regel tragfähig. Bei mind. steifplastischer Konsistenz genügt ein einfaches Rohrauflager oder eine Ausgleichsschicht von ca. 20 cm Mächtigkeit. Bei aufgeweichten Verhältnissen sollten diese Bereiche durch ein geeignetes Fremdmaterial mit mind. 30 cm Mächtigkeit ausgetauscht werden, z.B. gebrochener Muschelkalk 0/45. Um ein Eindrücken in die aufgeweichten Bodenschichten zu vermeiden, sollte dem Bodenaustausch ein Geotextil unterlegt werden. Für Schachtbauwerke sollte grundsätzlich eine ca. 30 cm mächtige Schottertragschicht aus Grobschotter oder gebrochenem Muschelkalk 0/45 vorgesehen werden.



Für die Verfüllung von Rohrgräben ist die ZTVE-StB 17 maßgebend, die Verdichtung des Grabenmaterials ist nachzuweisen.

Leitungszone Dpr > 97%

0,5 m unter Planum Dpr > 100 % bei nichtbindigen bzw. 97 % bei bindigen Böden Um eine Dränagewirkung entlang der eingebauten Kanäle und Leitungen zu vermeiden, wird das Einbringen von Lehmschlägen empfohlen.

#### 5.5 EINTEILUNG IN HOMOGENBEREICHE

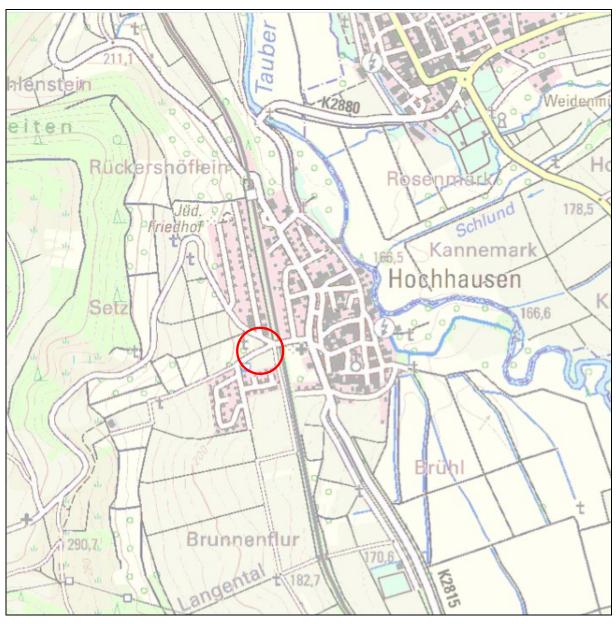
Das Bauvorhaben kann der Geotechnischen Kategorie 2 zugeordnet werden, die Einteilung in die entsprechenden Homogenbereiche für Erdbau (DIN 18300:2016) ist folgende:

Homogenbereich A: Oberboden

Homogenbereich B: Hanglehm/Löss

Tabelle 5: charakteristische Bodenkennwerte der Homogenbereiche Erdbau DIN 18300

|                             |                         |       | A          | В              |
|-----------------------------|-------------------------|-------|------------|----------------|
|                             | Ton / Schluff           | %     | 85 – 100   | 90 – 100       |
|                             | Sand                    | %     | 0 – 5      | 0 – 5          |
| Korngröße                   | Kies                    | %     | 0 – 5      | 0 – 5          |
| Corng                       | Steine (63 - 200 mm)    | %     | 0 – 5      | -              |
| <u>x</u>                    | Blöcke (200 – 630 mm)   | %     | -          | -              |
|                             | Große Blöcke (> 630 mm) | %     | -          | -              |
| Dich                        | Dichte                  |       | -          | 1,6 – 1,8      |
| Undränierte Scherfestigkeit |                         | kN/m² | -          | 15 – 30        |
| Wassergehalt                |                         | %     | -          | 20 – 25        |
| Kon                         | sistenzzahl             | -     | -          | 0,5 – 0,75     |
| Plastizitätszahl            |                         | %     | -          | 4 – 25         |
| Lagerungsdichte             |                         | -     | -          | locker         |
| Organischer Anteil          |                         | %     | 2->5       | -              |
| Bodengruppe DIN 18196       |                         |       | UM, UL, OU | UM, UL, TM, TL |
| Ortsübliche Bezeichnung     |                         |       | Oberboden  | Hanglehm/Löss  |




#### 6. EMPFEHLUNGEN UND HINWEISE

- Das Baufeld liegt außerhalb von definierten Erdbebenzonen. Weitere Betrachtungen sind nicht erforderlich.
- Der Bericht beruht auf zwei Rammkernsondierungen und einer leichten Rammsondierung. Eine Überprüfung der Verhältnisse beim Aushub ist zu empfehlen.
- Wir bitten um Benachrichtigung, wenn die Baumaßnahme beginnt, um Aussagen und Annahmen zu überprüfen.
- Bei abweichenden Untergrundverhältnissen bitten wir um Rücksprache.

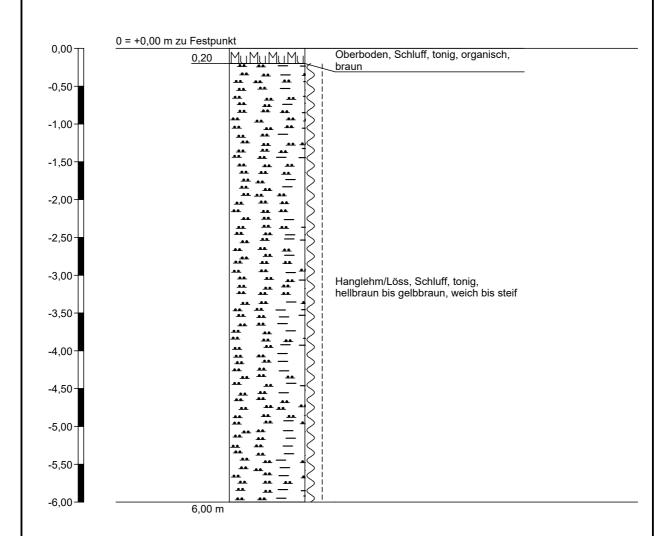
## Anlage 1

## Auszug aus dem Onlineportal der LUBW



Untersuchungsgebiet

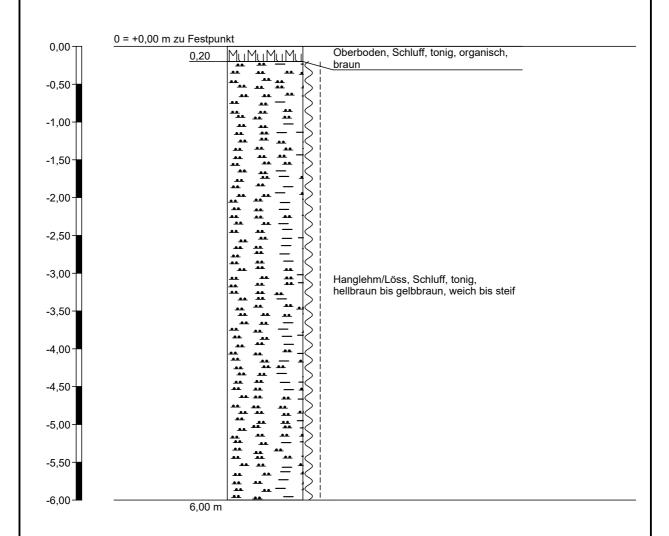



| Pohrnunktkarto                            | Anlage 2               |  |
|-------------------------------------------|------------------------|--|
| Bohrpunktkarte                            | Datum: 18.01.2023      |  |
| Projekt: Neubau Kindergarten - Hochhausen | Projektnummer: 08-1510 |  |
| Karte: Lageplan der Sondierpunkte         | Bearb.: FW1            |  |



Maßstab 1:1200

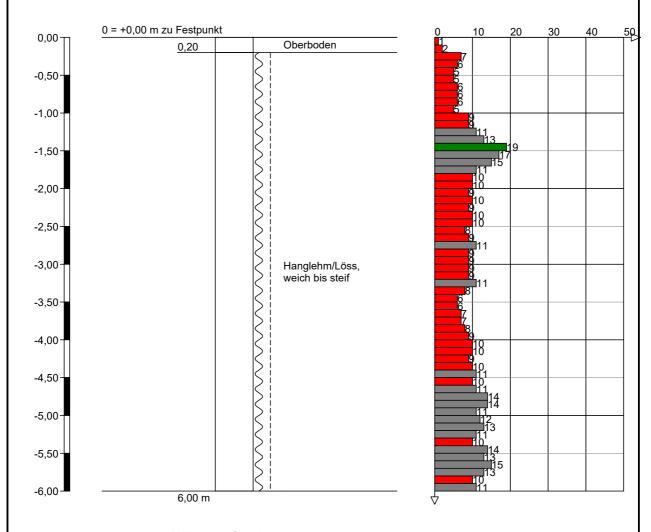
| Zeichnerische Darstellung von Bohrprofilen | Anlage 3.1             |
|--------------------------------------------|------------------------|
|                                            | Datum: 18.01.2023      |
| Projekt: Neubau Kindergarten - Hochhausen  | Projektnummer: 08-1510 |
| Bohrung/Schurf: RKS 1                      | Bearb.: FW1            |


#### RKS<sub>1</sub>



Höhenmaßstab 1:50

|                                            | Anlage 3.2             |
|--------------------------------------------|------------------------|
| Zeichnerische Darstellung von Bohrprofilen | Datum: 18.01.2023      |
| Projekt: Neubau Kindergarten - Hochhausen  | Projektnummer: 08-1510 |
| Bohrung/Schurf: RKS 2                      | Bearb.: FW1            |


#### RKS 2



Höhenmaßstab 1:50

|                                            | Anlage 3.3             |
|--------------------------------------------|------------------------|
| Zeichnerische Darstellung von Bohrprofilen | Datum: 18.01.2023      |
| Projekt: Neubau Kindergarten - Hochhausen  | Projektnummer: 08-1510 |
| Bohrung/Schurf: RS 1                       | Bearb.: FW1            |





Höhenmaßstab 1:50

|                                                                                                          | Anlage 4                       |
|----------------------------------------------------------------------------------------------------------|--------------------------------|
| Legende und Zeichenerklärung                                                                             | Datum: 18.01.2023              |
| Projekt: Neubau Kindergarten - Hochhausen                                                                | Projektnummer: 08-1510         |
| Bohrung/Schurf: RKS 1                                                                                    | Bearb.: FW1                    |
| Ton, T, tonig, t  Korngrößenbereich f - fein m - mittel g - grob  Rammdiagramm  Farben  0 10 20 30 40 50 | - stark (30-40%)  ker teldicht |
|                                                                                                          |                                |

Anlage 5

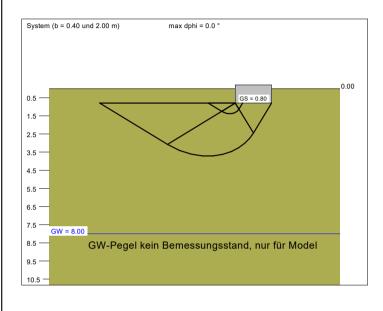








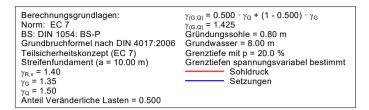
## Wassergehaltsbestimmungen

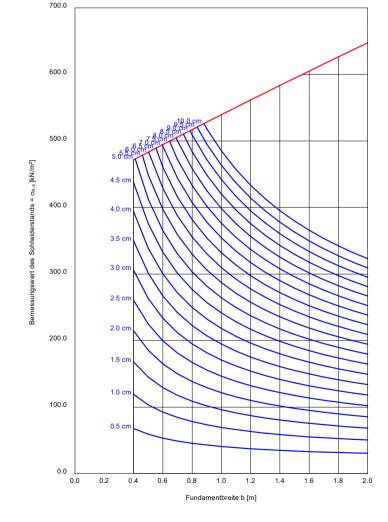

| Hanglehm/Löss (RKS 1)                 |        |
|---------------------------------------|--------|
| Feuchte Probe + Behälter m + mB (G)   | 316,20 |
| Trockene Probe + Behälter md + mB (g) | 292,20 |
| Behälter mB (g)                       | 166,00 |
| Wasser ( m + mB) - (md + mB) = mw     | 24,00  |
| Trockene Probe md (g)                 | 126,20 |
| Wassergehalt (%) w = mw / md * 100    | 19,0   |

| Hanglehm/Löss (RKS 2)                 |        |
|---------------------------------------|--------|
| Feuchte Probe + Behälter m + mB (G)   | 266,80 |
| Trockene Probe + Behälter md + mB (g) | 243,20 |
| Behälter mB (g)                       | 127,60 |
| Wasser ( m + mB) - (md + mB) = mw     | 23,60  |
| Trockene Probe md (g)                 | 115,60 |
| Wassergehalt (%) w = mw / md * 100    | 20,4   |

| Boden | γ<br>[kN/m³] | γ'<br>[kN/m³] | φ<br>[°] | c<br>[kN/m²] | $E_s$ [MN/m $^2$ ] | v<br>[-] | Bezeichnung   |
|-------|--------------|---------------|----------|--------------|--------------------|----------|---------------|
|       | 20.0         | 10.0          | 27.5     | 15.0         | 5.0                | 0.00     | Hanglehm/Löss |

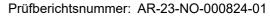

## Neubau Kindergarten Hochhausen - Tauberbischofsheim


## Anlage 7




| a<br>[m] | b<br>[m] | σ <sub>R,d</sub><br>[kN/m²] | R <sub>n,d</sub><br>[kN/m] | σ <sub>E,k</sub><br>[kN/m²] | s<br>[cm] | cal φ<br>[°] | cal c<br>[kN/m²] | γ <sub>2</sub><br>[kN/m³] | σ <sub>Ū</sub><br>[kN/m²] | t <sub>g</sub><br>[m] | UK LS<br>[m] |
|----------|----------|-----------------------------|----------------------------|-----------------------------|-----------|--------------|------------------|---------------------------|---------------------------|-----------------------|--------------|
| 10.00    | 0.40     | 471.8                       | 188.7                      | 331.1                       | 4.90      | 27.5         | 15.00            | 20.00                     | 16.00                     | 4.37                  | 1.38         |
| 10.00    | 0.50     | 483.2                       | 241.6                      | 339.1                       | 5.98      | 27.5         | 15.00            | 20.00                     | 16.00                     | 4.80                  | 1.53         |
| 10.00    | 0.60     | 494.6                       | 296.7                      | 347.1                       | 7.04      | 27.5         | 15.00            | 20.00                     | 16.00                     | 5.21                  | 1.67         |
| 10.00    | 0.70     | 505.9                       | 354.1                      | 355.0                       | 8.10      | 27.5         | 15.00            | 20.00                     | 16.00                     | 5.58                  | 1.82         |
| 10.00    | 0.80     | 517.1                       | 413.7                      | 362.9                       | 9.16      | 27.5         | 15.00            | 20.00                     | 16.00                     | 5.93                  | 1.96         |
| 10.00    | 0.90     | 528.3                       | 475.5                      | 370.7                       | 10.21     | 27.5         | 15.00            | 20.00                     | 16.00                     | 6.27                  | 2.11         |
| 10.00    | 1.00     | 539.4                       | 539.4                      | 378.5                       | 11.27     | 27.5         | 15.00            | 20.00                     | 16.00                     | 6.59                  | 2.25         |
| 10.00    | 1.10     | 550.5                       | 605.6                      | 386.3                       | 12.33     | 27.5         | 15.00            | 20.00                     | 16.00                     | 6.90                  | 2.40         |
| 10.00    | 1.20     | 561.5                       | 673.8                      | 394.0                       | 13.40     | 27.5         | 15.00            | 20.00                     | 16.00                     | 7.19                  | 2.55         |
| 10.00    | 1.30     | 572.5                       | 744.2                      | 401.7                       | 14.47     | 27.5         | 15.00            | 20.00                     | 16.00                     | 7.48                  | 2.69         |
| 10.00    | 1.40     | 583.4                       | 816.7                      | 409.4                       | 15.55     | 27.5         | 15.00            | 20.00                     | 16.00                     | 7.76                  | 2.84         |
| 10.00    | 1.50     | 594.2                       | 891.3                      | 417.0                       | 16.63     | 27.5         | 15.00            | 20.00                     | 16.00                     | 8.03                  | 2.98         |
| 10.00    | 1.60     | 605.0                       | 968.0                      | 424.6                       | 17.76     | 27.5         | 15.00            | 20.00                     | 16.00                     | 8.36                  | 3.13         |
| 10.00    | 1.70     | 615.7                       | 1046.7                     | 432.1                       | 18.90     | 27.5         | 15.00            | 20.00                     | 16.00                     | 8.68                  | 3.27         |
| 10.00    | 1.80     | 626.4                       | 1127.5                     | 439.6                       | 20.05     | 27.5         | 15.00            | 20.00                     | 16.00                     | 9.00                  | 3.42         |
| 10.00    | 1.90     | 637.0                       | 1210.3                     | 447.0                       | 21.21     | 27.5         | 15.00            | 20.00                     | 16.00                     | 9.30                  | 3.56         |
| 10.00    | 2.00     | 647.6                       | 1295.1                     | 454.4                       | 22.37     | 27.5         | 15.00            | 20.00                     | 16.00                     | 9.60                  | 3.71         |

 $\sigma_{E,k} = \sigma_{0f,k} \ / \ (\gamma_{R,v} \cdot \gamma_{(G,Q)}) = \sigma_{0f,k} \ / \ (1.40 \cdot 1.43) = \sigma_{0f,k} \ / \ 1.99 \ \ (für \ Setzungen)$  Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50








| Parameter             | Einheit | MP 1        | Klasse | Z 0 Lehm  | Z 0*      | Z 1.1     | Z 1.2      | Z 2         |
|-----------------------|---------|-------------|--------|-----------|-----------|-----------|------------|-------------|
| pH-Wert               |         | 8,7         | Z 0    | 6,5 - 9,5 | 6,5 - 9,5 | 6,5 - 9,5 | 6,0 - 12,0 | 5,5 - 12,0  |
| Elektr. Leitfähigkeit | μS/cm   | 84          | Z 0    | 250       | 250       | 250       | 1500       | 2000        |
| Chlorid               | mg/l    | < 1,0       | Z 0    | 30        | 30        | 30        | 50         | 100         |
| Sulfat                | mg/l    | 1           | Z 0    | 50        | 50        | 50        | 100        | 150         |
| As                    | mg/kg   | 8,3         | Z 0    | 15        | 15/20     | 45        | 45         | 150         |
|                       | μg/l    | < 1         | Z 0    | -         | 14        | 14        | 20         | 60          |
| Pb                    | mg/kg   | 12          | Z 0    | 70        | 140       | 210       | 210        | 700         |
|                       | μg/l    | < 1         | Z 0    | -         | 40        | 40        | 80         | 200         |
| Cd                    | mg/kg   | < 0,2       | Z 0    | 1         | 1         | 3         | 3          | 10          |
|                       | μg/l    | < 0,3       | Z 0    | -         | 1,5       | 1,5       | 3          | <u>6</u>    |
| Cr ges.               | mg/kg   | 24          | Z 0    | 60        | 120       | 180       | 180        | 600         |
|                       | μg/l    | < 1         | Z 0    | -         | 12,5      | 12,5      | 25         | 60          |
| Cu                    | mg/kg   | 13          |        | 40        | 80        | 120       | 120        | 400         |
|                       | μg/l    | < 5         | _      | -         | 20        | 20        | 60         | 100         |
| Ni                    | mg/kg   | 25          | Z 0    | 50        | 100       | 150       | 150        | 500         |
|                       | μg/l    | < 1         | Z 0    | -         | 15        | 15        | 20         | 70          |
| TI                    | mg/kg   | < 0,2       | Z 0    | 0,7       | 0,7       | 2,1       | 2,1        | 7           |
| Hg                    | mg/kg   | < 0,07      | Z 0    | 0,5       | 1         | 1,5       | 1,5        | 5           |
|                       | μg/l    | < 0,2       | Z 0    | -         | 0,5       | 0,5       | 1          | 2           |
| Zn                    | mg/kg   | 42          | Z 0    | 150       | 300       | 450       | 450        | 1500        |
|                       | μg/l    | < 10        |        | -         | 150       | 150       | 200        | 600         |
| Cyanide ges.          | mg/kg   | < 0,5       | Z 0    | -         | -         | 3         | 3          | 10          |
|                       | μg/l    | < 5         | -      | 5         | 5         | 5         | 10         | 20          |
| EOX                   | mg/kg   | < 1,0       |        | 1         | 1         | 3         | 3          | 10          |
| KW C10-C22 (C10-C40)  | mg/kg   | < 40 (< 40) | Z0/Z0  | 100       | 200 (400) | 300 (600) | 300 (600)  | 1000 (2000) |
| KW C10-C22            | mg/kg   | < 40        | Z 0    | 100       | 200       | 300       | 300        | 1000        |
| KW C10-C40            | mg/kg   | < 40        | Z 0    | 100       | 400       | 600       | 600        | 2000        |
| BTEX                  | mg/kg   | n.n.        | Z 0    | 1         | 1         | 1         | 1          | 1           |
| LHKW                  | mg/kg   | n.n.        | Z 0    | 1         | 1         | 1         | 1          | 1           |
| PCB <sub>6</sub>      | mg/kg   | n.n.        | Z 0    | 0,05      | 0,1       | 0,15      | 0,15       | 0,5         |
| PAK (EPA)             | mg/kg   | n.n.        | Z 0    | 3         | 3         | 3         | 9          | 30          |
| Benzo(a)pyren         | mg/kg   | < 0,05      |        | 0,3       | 0,6       | 0,9       | 0,9        | 3           |
| Phenole               | µg/l    | < 10        | Z 0    | 20        | 20        | 20        | 40         | 100         |

| Parameter             | Einheit | MP 1     | Klasse | DK 0       | DK I       | DK II      | DK III     |
|-----------------------|---------|----------|--------|------------|------------|------------|------------|
| pH-Wert               |         | 8,7      |        | 5,5 - 13,0 | 5,5 - 13,0 | 5,5 - 13,0 | 4,0 - 13,0 |
| Elektr. Leitfähigkeit | μS/cm   | 84       |        |            |            |            |            |
| Wasserlös. Anteil     | mg/l    | < 150    |        | 400        | 3000       | 6000       | 10000      |
| Chlorid               | mg/l    | < 1,0    |        | 80         | 1500       | 1500       |            |
| Sulfat                | mg/l    | 1        | DK 0   | 100        | 2000       | 2000       |            |
| Fluorid               | mg/l    | 0,4      | DK 0   | 1          | 5          | 15         | 50         |
| As                    | mg/kg   | 8,3      |        |            |            |            |            |
|                       | mg/l    | < 0,001  | DK 0   | 0,05       | 0,2        | 0,2        | 2,5        |
| Pb                    | mg/kg   | 12       |        |            |            |            |            |
|                       | mg/l    | < 0,001  | DK 0   | 0,05       | 0,2        | 1          | 5          |
| Cd                    | mg/kg   | < 0,2    |        |            |            |            |            |
|                       | mg/l    | < 0,0003 |        | 0,004      | 0,05       | 0,1        | 0,5        |
| Cr ges.               | mg/kg   | 24       |        |            |            |            |            |
|                       | mg/l    | < 0,001  | DK 0   | 0,05       | 0,3        | 1          | 7          |
| Cu                    | mg/kg   | 13       |        |            |            |            |            |
|                       | mg/l    | < 0,005  |        | 0,2        | 1          | 5          | 10         |
| Ni                    | mg/kg   | 25       |        |            |            |            |            |
|                       | mg/l    | < 0,001  | DK 0   | 0,04       | 0,2        | 1          | 4          |
| Hg                    | mg/kg   | < 0,07   |        |            |            |            |            |
|                       | mg/l    | < 0,0002 | DK 0   | 0,001      | 0,005      | 0,02       | 0,2        |
| Zn                    | mg/kg   | 42       |        |            |            |            |            |
|                       | mg/l    | < 0,01   | DK 0   | 0,4        | 2          | 5          | 20         |
| Cyanide ges.          | mg/l    | < 0,005  | DK 0   | 0,01       | 0,1        | 0,5        | 1          |
| Lipophile Stoffe      | Gew%    | < 0,02   | DK 0   | 0,1        | 0,4        | 0,8        | 4          |
| Säureneutr.           | mmol/kg |          |        |            |            |            |            |
| KW C10 - C40          | mg/kg   | < 40     | DK 0   | 500        | -          | -          | -          |
| PCB7                  | mg/kg   | n.n.     | DK 0   | 1          | -          | -          | -          |
| BTEX                  | mg/kg   | n.n.     | DK 0   | 6          | -          | -          | -          |
| PAK (EPA)             | mg/kg   | n.n.     | DK 0   | 30         | -          | -          | -          |
| Phenole               | mg/l    | < 0,01   |        | 0,1        | 0,2        | 50         | 100        |
| Mo                    | mg/l    | < 0,001  | DK 0   | 0,05       | 0,3        | 1          | 7          |
| Sb                    | mg/l    | < 0,001  |        | 0,006      | 0,3        | 0,07       | 0,5        |
| Se                    | mg/l    | < 0,001  | DK 0   | 0,01       | 0,03       | 0,05       |            |
| Ва                    | mg/l    | 0,005    | DK 0   | 2          | 5          | 10         |            |
| Glühverlust 550°C     | Gew%    | 3        | DK 0   | 3          | 3          | 5          |            |
| TOC                   | Gew%    | 0,6      | DK 0   | 1          | 1          | 3          |            |
| DOC                   | mg/l    | 1,7      | DK 0   | 50         | 50         | 80         | 100        |



Seite 1 von 6



Eurofins Umwelt Südwest GmbH - Karlsruher Straße 22 - 76437 Rastatt

Walter und Partner GbR Beratende Ingenieure VBI Johannes-Kepler-Straße 1 97941 Tauberbischofsheim

Titel: Prüfbericht zu Auftrag 72301011

Prüfberichtsnummer: AR-23-NO-000824-01

Auftragsbezeichnung: Neubau Kindergarten Hochhausen - TBB

Anzahl Proben: 1

Probenart: Boden
Probenahmedatum: 25.01.2023

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 26.01.2023

Prüfzeitraum: 26.01.2023 - 01.02.2023

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

#### Anhänge:

XML\_Export\_AR-23-NO-000824-01.xml

Renate Graf Digital signiert, 02.02.2023

Prüfleitung Umweltanalytik Deutschland Mark Christjani
Tel. +49 7222 933440 Prüfleitung



#### Umwelt

|                                 |         |        |                                                          | Probenbeze        | eichnung      | Mischprobe<br>geogen |
|---------------------------------|---------|--------|----------------------------------------------------------|-------------------|---------------|----------------------|
|                                 |         |        |                                                          | Probenahm         | edatum/ -zeit | 25.01.2023           |
|                                 |         |        |                                                          | Probennummer      |               | 723002008            |
| Parameter                       | Lab.    | Akkr.  | Methode                                                  | BG                | Einheit       |                      |
| Probenvorbereitung Feststo      | ffe     |        |                                                          |                   | -             |                      |
| Probenbegleitprotokoll          | AN/f    |        |                                                          |                   |               | siehe Anlage         |
| Probenmenge inkl.<br>Verpackung | AN/f    | L8     | DIN 19747: 2009-07                                       |                   | kg            | 1,9                  |
| Fremdstoffe (Art)               | AN/f    | L8     | DIN 19747: 2009-07                                       |                   |               | nein                 |
| Fremdstoffe (Menge)             | AN/f    | L8     | DIN 19747: 2009-07                                       |                   | g             | 0,0                  |
| Siebrückstand > 10mm            | AN/f    | L8     | DIN 19747: 2009-07                                       |                   |               | nein                 |
| Fremdstoffe (Anteil)            | AN/f    | L8     | DIN 19747: 2009-07                                       | 0,1               | %             | < 0,1                |
| Rückstellprobe                  | AN/f    |        | Hausmethode                                              | 100               | g             | 1160                 |
| Königswasseraufschluss          | AN/f    | L8     | DIN EN 13657: 2003-01                                    |                   |               | Х                    |
| Physikalisch-chemische Kei      | nngrö   | ßen au | ıs der Originalsubs                                      | tanz              |               |                      |
| Trockenmasse                    | AN      | L8     | DIN EN 14346: 2007-03                                    | 0,1               | Ma%           | 84,2                 |
| Anionen aus der Originalsul     | ostanz  | Z      | 1                                                        | 1                 | 1             |                      |
| Cyanide, gesamt                 | AN/f    | L8     | DIN ISO 17380: 2013-10                                   | 0,5               | mg/kg TS      | < 0,5                |
| Elemente aus dem Königswa       | asser   | aufsch | lluss nach DIN EN 1                                      | <br> 3657: 2003-( | 01#           |                      |
| Arsen (As)                      | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 0,8               | mg/kg TS      | 8,3                  |
| Blei (Pb)                       | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 2                 | mg/kg TS      | 12                   |
| Cadmium (Cd)                    | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 0,2               | mg/kg TS      | < 0,2                |
| Chrom (Cr)                      | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 1                 | mg/kg TS      | 24                   |
| Kupfer (Cu)                     | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 1                 | mg/kg TS      | 13                   |
| Nickel (Ni)                     | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 1                 | mg/kg TS      | 25                   |
| Quecksilber (Hg)                | AN/f    | L8     | DIN EN ISO 12846 (E12):<br>2012-08                       | 0,07              | mg/kg TS      | < 0,07               |
| Thallium (TI)                   | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 0,2               | mg/kg TS      | < 0,2                |
| Zink (Zn)                       | AN/f    | L8     | DIN EN ISO 17294-2<br>(E29): 2017-01                     | 1                 | mg/kg TS      | 42                   |
| Organische Summenparame         | eter au | ıs der | Originalsubstanz                                         |                   |               |                      |
| Glühverlust (550 °C)            | AN/f    | L8     | DIN EN 15169: 2007-05                                    | 0,1               | Ma% TS        | 3,0                  |
| тос                             | AN/f    | L8     | DIN EN 15936: 2012-11<br>(AN,L8: Ver.A; FG,F5:<br>Ver.B) | 0,1               | Ma% TS        | 0,6                  |
| EOX                             | AN/f    | L8     | DIN 38414-17 (S17):<br>2017-01                           | 1,0               | mg/kg TS      | < 1,0                |
| Extrahierbare lipophile Stoffe  | AN/f    | L8     | LAGA KW/04: 2019-09                                      | 0,02              | Ma% TS        | < 0,02               |
| Kohlenwasserstoffe C10-C22      | AN/f    | L8     | DIN EN 14039:<br>2005-01/LAGA KW/04:<br>2019-09          | 40                | mg/kg TS      | < 40                 |
| Kohlenwasserstoffe C10-C40      | AN/f    | L8     | DIN EN 14039:<br>2005-01/LAGA KW/04:<br>2019-09          | 40                | mg/kg TS      | < 40                 |



|                                |       |        |                              | Probenbeze  | Probenbezeichnung                   |            |  |
|--------------------------------|-------|--------|------------------------------|-------------|-------------------------------------|------------|--|
|                                |       |        |                              | Probenahm   | Probenahmedatum/ -zeit Probennummer |            |  |
|                                |       |        |                              | Probennum   |                                     |            |  |
| Parameter                      | Lab.  | Akkr.  | Methode                      | BG          | Einheit                             |            |  |
| BTEX und aromatische Koh       | lenwa | sserst | offe aus der Origi           | nalsubstanz | •                                   |            |  |
| Benzol                         | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Toluol                         | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Ethylbenzol                    | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| m-/-p-Xylol                    | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| o-Xylol                        | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Summe BTEX                     | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 |             | mg/kg TS                            | (n. b.) 1) |  |
| Isopropylbenzol (Cumol)        | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Styrol                         | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Summe BTEX + Styrol +<br>Cumol | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 |             | mg/kg TS                            | (n. b.) 1) |  |
| LHKW aus der Originalsubs      | tanz  |        |                              |             | •                                   |            |  |
| Dichlormethan                  | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| trans-1,2-Dichlorethen         | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| cis-1,2-Dichlorethen           | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Chloroform (Trichlormethan)    | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| 1,1,1-Trichlorethan            | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Tetrachlormethan               | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Trichlorethen                  | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Tetrachlorethen                | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| 1,1-Dichlorethen               | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| 1,2-Dichlorethan               | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 | 0,05        | mg/kg TS                            | < 0,05     |  |
| Summe LHKW (10<br>Parameter)   | AN/f  | L8     | DIN EN ISO 22155:<br>2016-07 |             | mg/kg TS                            | (n. b.) 1) |  |



#### Umwelt

|                                          |        |              |                                   | Probenbezei | chnung       | Mischprobe<br>geogen |
|------------------------------------------|--------|--------------|-----------------------------------|-------------|--------------|----------------------|
|                                          |        |              |                                   | Probenahme  | datum/ -zeit | 25.01.2023           |
|                                          |        |              |                                   | Probennumr  | ner          | 723002008            |
| Parameter                                | Lab.   | Akkr.        | Methode                           | BG          | Einheit      |                      |
| PAK aus der Originalsubsta               | nz     |              |                                   |             |              |                      |
| Naphthalin                               | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Acenaphthylen                            | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Acenaphthen                              | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Fluoren                                  | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Phenanthren                              | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Anthracen                                | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Fluoranthen                              | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Pyren                                    | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Benzo[a]anthracen                        | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Chrysen                                  | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Benzo[b]fluoranthen                      | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Benzo[k]fluoranthen                      | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Benzo[a]pyren                            | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Indeno[1,2,3-cd]pyren                    | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Dibenzo[a,h]anthracen                    | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Benzo[ghi]perylen                        | AN/f   | L8           | DIN ISO 18287: 2006-05            | 0,05        | mg/kg TS     | < 0,05               |
| Summe 16 EPA-PAK exkl.<br>BG             | AN/f   | L8           | DIN ISO 18287: 2006-05            |             | mg/kg TS     | (n. b.) 1)           |
| Summe 15 PAK ohne<br>Naphthalin exkl. BG | AN/f   | L8           | DIN ISO 18287: 2006-05            |             | mg/kg TS     | (n. b.) 1)           |
| PCB aus der Originalsubsta               | nz     |              |                                   |             |              |                      |
| PCB 28                                   | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| PCB 52                                   | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| PCB 101                                  | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| PCB 153                                  | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| PCB 138                                  | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| PCB 180                                  | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| Summe 6 DIN-PCB exkl. BG                 | AN/f   | L8           | DIN EN 15308: 2016-12             |             | mg/kg TS     | (n. b.) 1)           |
| PCB 118                                  | AN/f   | L8           | DIN EN 15308: 2016-12             | 0,01        | mg/kg TS     | < 0,01               |
| Summe PCB (7)                            | AN/f   | L8           | DIN EN 15308: 2016-12             |             | mg/kg TS     | (n. b.) 1)           |
| Physchem. Kenngrößen au                  | ıs den | ່<br>າ 10:1- | Schütteleluat nach                | DIN EN 1245 | 7-4: 2003-01 |                      |
| pH-Wert                                  | AN/f   | L8           | DIN EN ISO 10523 (C5):<br>2012-04 |             |              | 8,7                  |
| Temperatur pH-Wert                       | AN/f   | L8           | DIN 38404-4 (C4):<br>1976-12      |             | °C           | 21,0                 |
| Leitfähigkeit bei 25°C                   | AN/f   | L8           | DIN EN 27888 (C8):<br>1993-11     | 5           | μS/cm        | 84                   |
| Wasserlöslicher Anteil                   | AN/f   | L8           | DIN EN 15216: 2008-01             | 0,15        | Ma%          | < 0,15               |
| Gesamtgehalt an gelösten<br>Feststoffen  | AN/f   | L8           | DIN EN 15216: 2008-01             | 150         | mg/l         | < 150                |



#### Umwelt

|                                            |           | (       | ımweit                               |              |                   |            |
|--------------------------------------------|-----------|---------|--------------------------------------|--------------|-------------------|------------|
|                                            |           |         |                                      | Probenbezei  | Mischprobe geogen |            |
|                                            |           |         |                                      | Probenahme   | edatum/ -zeit     | 25.01.2023 |
|                                            |           |         |                                      | Probennumr   | mer               | 723002008  |
| Parameter                                  | Lab.      | Akkr.   | Methode                              | BG           | Einheit           |            |
| Anionen aus dem 10:1-Scl                   | hüttelelı | uat nac | h DIN EN 12457-4:                    | 2003-01      | !                 |            |
| Fluorid                                    | AN/f      | L8      | DIN EN ISO 10304-1<br>(D20): 2009-07 | 0,2          | mg/l              | 0,4        |
| Chlorid (CI)                               | AN/f      | L8      | DIN EN ISO 10304-1<br>(D20): 2009-07 | 1,0          | mg/l              | < 1,0      |
| Sulfat (SO4)                               | AN/f      | L8      | DIN EN ISO 10304-1<br>(D20): 2009-07 | 1,0          | mg/l              | 1,0        |
| Cyanide, gesamt                            | AN/f      | L8      | DIN EN ISO 14403-2:<br>2012-10       | 0,005        | mg/l              | < 0,005    |
| Cyanid leicht freisetzbar /<br>Cyanid frei | AN/f      | L8      | DIN EN ISO 14403-2:<br>2012-10       | 0,005        | mg/l              | < 0,005    |
| Elemente aus dem 10:1-So                   | hüttele   | luat na | ich DIN EN 12457-4                   | : 2003-01    |                   |            |
| Antimon (Sb)                               | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Arsen (As)                                 | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Barium (Ba)                                | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | 0,005      |
| Blei (Pb)                                  | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Cadmium (Cd)                               | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,0003       | mg/l              | < 0,0003   |
| Chrom (Cr)                                 | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Kupfer (Cu)                                | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,005        | mg/l              | < 0,005    |
| Molybdän (Mo)                              | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Nickel (Ni)                                | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Quecksilber (Hg)                           | AN/f      | L8      | DIN EN ISO 12846 (E12):<br>2012-08   | 0,0002       | mg/l              | < 0,0002   |
| Selen (Se)                                 | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,001        | mg/l              | < 0,001    |
| Zink (Zn)                                  | AN/f      | L8      | DIN EN ISO 17294-2<br>(E29): 2017-01 | 0,01         | mg/l              | < 0,01     |
| Org. Summenparameter a                     | us dem    | 10:1-S  | chütteleluat nach D                  | OIN EN 12457 | -4: 2003-01       |            |
| Gelöster org. Kohlenstoff (DOC)            | AN/f      | L8      | DIN EN 1484 (H3):<br>2019-04         | 1,0          | mg/l              | 1,7        |
| Phenolindex,<br>wasserdampfflüchtig        | AN/f      | L8      | DIN EN ISO 14402 (H37):<br>1999-12   | 0,01         | mg/l              | < 0,01     |
|                                            |           |         | 1                                    |              | 1                 |            |

## Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchaeführ

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Vorgebirgsstrasse 20, Wesseling) analysiert. Die Bestimmung der mit L8 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

<sup>#</sup> Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

<sup>1)</sup> nicht berechenbar



### Probenbegleitprotokoll nach DIN 19747 - Juli 2009 - Anhang A

Probennummer 723002008

Probenbeschreibung Mischprobe geogen

#### Probenvorbereitung

Probenehmer keine Angabe,

Probe(n) wurde(n) an

das Labor ausgehändigt

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Nein

Fremdstoffe (Menge): 0,0 g
Fremdstoffe (Anteil): < 0,1 %
Fremdstoffe (Art): nein
Siebrückstand > 10mm: nein

Siebrückstand wird auf < 10mm zerkleinert und dem Siebdurchgang beigemischt.

Probenteilung / Homogenisierung durch: Fraktionierendes Teilen

Rückstellprobe: 1160 g

#### Probenaufarbeitung (von der Prüfprobe zur Messprobe) \*\*\*\*)

| Nr.          | DK0 | DKI, II,<br>III | REK | Parameter                               | Zerkleinern **)               | Trocknen                       | Feinzerkleinern ***) | Probenmenge           |
|--------------|-----|-----------------|-----|-----------------------------------------|-------------------------------|--------------------------------|----------------------|-----------------------|
| 0            | Х   | Х               | Х   | Trockenmasse                            | < 5 mm                        | Nein                           | Nein                 | 15 g                  |
| 1.01         | Х   | Х               |     | Glühverlust                             | < 5 mm                        | 40 °C                          | < 150 µm             | 10 g                  |
| 1.02         | Х   | Х               |     | TOC                                     | < 5 mm                        | 40 °C                          | < 150 µm             | 2 g                   |
| 2.01         | Х   |                 |     | BTEX                                    | Originalprobe<br>(Stichprobe) | Nein                           | Nein                 | 20 g + 20 ml Methanol |
| 2.02 + 2.04  | Х   |                 | Х   | PAK/PCB                                 | < 5 mm                        | Nein                           | Nein                 | 12,5 g                |
| 2.03         | Х   |                 |     | MKW (C10 -<br>C40)                      | < 5 mm                        | Nein                           | Nein                 | 20 g                  |
| 2.07         | Х   | Х               |     | Lipophile Stoffe                        | < 5 mm                        | Verreiben mit<br>Natriumsulfat | Nein                 | 20 g                  |
| 2.08 - 2.14  |     |                 | X   | Metalle,<br>Königswasser-<br>aufschluss | < 5 mm                        | 40 °C                          | < 150 μm             | 3 g                   |
| 3.01 - 3.21  | Х   | Х               | Х   | Eluat                                   | Nein/ < 10 mm                 | Nein                           | Nein                 | 100 g                 |
| 1.01/1.02 *) | Х   | Х               |     | C-elementar                             | < 5 mm                        | 40 °C                          | < 150 µm             | 2 g                   |
| 1.01/1.02 *) | Х   | Х               |     | AT4                                     | < 10 mm                       | Nein                           | Nein                 | 300 g                 |
| 1.01/1.02 *) | Х   | Х               |     | GB21                                    | < 10 mm                       | Nein                           | Nein                 | 200 g                 |
| 1.01/1.02 *) | X   | Х               |     | Brennwert                               | < 5 mm                        | 105 °C                         | < 150 µm             | 5 g                   |

Die Ergebnisse beziehen sich auf das sortenreine Prüfprobenmaterial nach Entfernung der Fremdmaterialien gemäß DIN 19747:2009-07.

\*) Zusatzparameter bei Überschreitung der genannten Grenzwerte

\*\*) Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

\*\*\*) Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

\*\*\*\*) Maximalumfang; gilt nur für die beauftragten Parameter